Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 166: 115384, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37657260

RESUMO

Prefrontal cortex (PFC) inputs to the hippocampus are supposed to be critical in memory processes. Astrocytes are involved in several brain functions, such as homeostasis, neurotransmission, synaptogenesis. However, their role in PFC-mediated modulation of memory has yet to be studied. The present study aims at uncovering the role of PFC astroglia in memory performance and synaptic plasticity in the hippocampus. Using chemogenetic and lesions approaches of infralimbic PFC (IL-PFC) astrocytes, we evaluated memory performance in the novel object recognition task (NOR) and dorsal hippocampus synaptic plasticity. We uncovered a surprising role of PFC astroglia in modulating object recognition memory. In opposition to the astroglia PFC lesion, we show that chemogenetic activation of IL-PFC astrocytes increased memory performance in the novel object recognition task and facilitated in vivo dorsal hippocampus synaptic metaplasticity. These results redefine the involvement of PFC in recognition mnemonic processing, uncovering an important role of PFC astroglia.


Assuntos
Astrócitos , Reconhecimento Psicológico , Animais , Ratos , Cognição , Memória , Hipocampo
2.
J Thromb Haemost ; 21(11): 3117-3123, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37633640

RESUMO

BACKGROUND: Hemophilia B (HB) is a bleeding disorder characterized by coagulation factor (F) IX (FIX) deficiency. The current standard-of-care for severe HB is prophylaxis with long-term repetitive intravenous (i.v.) infusions of recombinant FIX (rFIX) with standard half-life or extended half-life. Unmet needs remain regarding the development of non-invasive administration routes for coagulation factors. The aim of this study was to evaluate the effectiveness of intranasal delivery (IND) of rFIX and rFIX fused to Fc fragment (rFIX-Fc) in mice. METHODS: Drops of rFIX and rFIX-Fc were deposited in the nostrils of wild-type, FcRn knock-out, FcRn humanized, and FIX knock-out mice. rFIX mucosal uptake was evaluated by measuring plasma FIX antigen and FIX activity (FIX:C) levels, and by performing histologic analysis of the nasal mucosa following IND. RESULTS: After IND, both rFIX and rFIX-Fc were equally delivered to the blood compartment, irrespective of the mouse strain studied, mostly through a passive mechanism of transportation across the mucosal barrier, independent of FcRn receptor. Both plasma FIX antigen and FIX:C activity levels increased following IND in FIX knock-out mice. CONCLUSION: This proof-of-concept study describes evidence supporting the nasal route as an alternative to FIX i.v. infusion for the treatment of HB.


Assuntos
Hemofilia A , Hemofilia B , Camundongos , Animais , Fator IX/uso terapêutico , Proteínas Recombinantes de Fusão/uso terapêutico , Hemofilia B/tratamento farmacológico , Hemofilia B/genética , Camundongos Knockout , Hemofilia A/tratamento farmacológico , Proteínas Recombinantes/uso terapêutico
3.
Molecules ; 28(12)2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37375333

RESUMO

Vaccine technology is still facing challenges regarding some infectious diseases, which can be addressed by innovative drug delivery systems. In particular, nanoparticle-based vaccines combined with new types of adjuvants are actively explored as a platform for improving the efficacy and durability of immune protection. Here, biodegradable nanoparticles carrying an antigenic model of HIV were formulated with two combinations of poloxamers, 188/407, presenting or not presenting gelling properties, respectively. The study aimed to determine the influence of poloxamers (as a thermosensitive hydrogel or a liquid solution) on the adaptive immune response in mice. The results showed that poloxamer-based formulations were physically stable and did not induce any toxicity using a mouse dendritic cell line. Then, whole-body biodistribution studies using a fluorescent formulation highlighted that the presence of poloxamers influenced positively the dissemination profile by dragging nanoparticles through the lymphatic system until the draining and distant lymph nodes. The strong induction of specific IgG and germinal centers in distant lymph nodes in presence of poloxamers suggested that such adjuvants are promising components in vaccine development.


Assuntos
Poloxâmero , Vacinas , Poloxâmero/metabolismo , Adjuvantes de Vacinas , Distribuição Tecidual , Antígenos , Linfonodos/metabolismo , Adjuvantes Imunológicos/química , Células Dendríticas
4.
Int J Mol Sci ; 23(21)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36362224

RESUMO

Among mucosal administration routes for vaccines, the sublingual route has been proven capable of inducing a potent systemic and mucosal immune response. However, the absence of a simple and compliant delivery system and the lack of robust mucosal adjuvants impede the development of sublingual vaccines. Here, we describe a mucoadhesive patch made of a layer-by-layer assembly of polysaccharides, chitosan, and hyaluronic acid. The mucoadhesive patch was covered by adjuvanted nanoparticles carrying viral proteins. We showed that the nanoparticles effectively cross the outer layers of the sublingual mucosa to reach the epithelium. Furthermore, the encapsulated adjuvants, 3M-052 and mifamurtide, targeting toll-like receptor (TLR) 7/8 and nucleotide-binding oligomerization domain-2 (NOD2), respectively, remain fully active after encapsulation into nanoparticles and exhibit a cytokine/chemokine signature similar to the mucosal gold-standard adjuvant, the cholera toxin. However, the particulate adjuvants induced more moderate levels of proinflammatory interleukin (IL)-6 and keratinocyte chemoattractant (KC), suggesting a controlled activation of the innate immune response.


Assuntos
Adjuvantes Imunológicos , Imunidade nas Mucosas , Animais , Camundongos , Administração Sublingual , Adjuvantes Imunológicos/farmacologia , Vacinas de Subunidades Antigênicas , Adjuvantes Farmacêuticos , Mucosa , Camundongos Endogâmicos BALB C
5.
Science ; 377(6610): eabq4515, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-36048943

RESUMO

At the present time, no viable treatment exists for cognitive and olfactory deficits in Down syndrome (DS). We show in a DS model (Ts65Dn mice) that these progressive nonreproductive neurological symptoms closely parallel a postpubertal decrease in hypothalamic as well as extrahypothalamic expression of a master molecule that controls reproduction-gonadotropin-releasing hormone (GnRH)-and appear related to an imbalance in a microRNA-gene network known to regulate GnRH neuron maturation together with altered hippocampal synaptic transmission. Epigenetic, cellular, chemogenetic, and pharmacological interventions that restore physiological GnRH levels abolish olfactory and cognitive defects in Ts65Dn mice, whereas pulsatile GnRH therapy improves cognition and brain connectivity in adult DS patients. GnRH thus plays a crucial role in olfaction and cognition, and pulsatile GnRH therapy holds promise to improve cognitive deficits in DS.


Assuntos
Cognição , Disfunção Cognitiva , Síndrome de Down , Hormônio Liberador de Gonadotropina , Transtornos do Olfato , Adulto , Animais , Cognição/efeitos dos fármacos , Cognição/fisiologia , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/etiologia , Modelos Animais de Doenças , Síndrome de Down/complicações , Síndrome de Down/tratamento farmacológico , Síndrome de Down/psicologia , Feminino , Hormônio Liberador de Gonadotropina/farmacologia , Hormônio Liberador de Gonadotropina/fisiologia , Hormônio Liberador de Gonadotropina/uso terapêutico , Humanos , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Transtornos do Olfato/tratamento farmacológico , Transtornos do Olfato/etiologia , Transmissão Sináptica/efeitos dos fármacos , Adulto Jovem
6.
Acta Physiol (Oxf) ; 229(1): e13440, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31925934

RESUMO

AIM: Astroglial connexins (Cxs) 30 and 43 are engaged in gap junction and hemichannel activities. Evidence suggests that these functional entities contribute to regulating neurotransmission, thereby influencing brain functions. In particular, preclinical and clinical findings highlight a role of Cx43 in animal models of depression. However, the role of these proteins in response to currently available psychotropic drugs is still unknown. METHODS: To investigate this, we evaluated the behavioural effects of the genetic and pharmacological inactivation of Cx43 on the antidepressant- and anxiolytic-like activities of the selective serotonin reuptake inhibitor fluoxetine and the benzodiazepine diazepam, respectively. RESULTS: A single administration of fluoxetine (18 mg/kg; i.p.) produced a higher increase in hippocampal extracellular serotonin levels, and a greater antidepressant-like effect in the tail suspension test in Cx43 knock-down (KD) mice bred on a C57BL/6 background compared to their wild-type littermates. Similarly, in outbred Swiss wild-type mice, the intra-hippocampal injection of a shRNA-Cx43 or the acute systemic injection of the Cxs inhibitor carbenoxolone (CBX: 10 mg/kg; i.p.) potentiated the antidepressant-like effects of fluoxetine. Evaluating the effects of such strategies on diazepam (0.5 mg/kg; i.p.), the results indicate that Cx43 KD mice or wild-types injected with a shRNA-Cx43 in the amygdala, but not in the hippocampus, attenuated the anxiolytic-like effects of this benzodiazepine in the elevated plus maze. The chronic systemic administration of CBX mimicked the latter observations. CONCLUSION: Collectively, these data pave the way to the development of potentiating strategies in the field of psychiatry based on the modulation of astroglial Cx43.


Assuntos
Ansiolíticos/farmacologia , Antidepressivos/farmacologia , Astrócitos/efeitos dos fármacos , Conexina 43/antagonistas & inibidores , Conexina 43/genética , Animais , Astrócitos/metabolismo , Benzodiazepinas/farmacologia , Diazepam/farmacologia , Fluoxetina/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Inibidores Seletivos de Recaptação de Serotonina/farmacologia
7.
CNS Neurosci Ther ; 24(12): 1129-1139, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29729086

RESUMO

AIM: Cariprazine, a dopamine D3 -preferring D3 /D2 receptor partial agonist, is FDA approved for the treatment of schizophrenia and acute manic or mixed episodes of bipolar disorder. This study used in vivo electrophysiological techniques in anesthetized rats to determine cariprazine's effect on dopaminergic cell activity in the ventral tegmental area (VTA) and substantia nigra pars compacta (SNc). METHODS: Extracellular recordings of individual dopaminergic neurons were performed after oral or intravenous administration of cariprazine, the D3 receptor antagonist SB 277011A, the D2 receptor antagonist L741,626, and/or the D3 receptor agonist PD 128,907. RESULTS: Acute oral treatment with cariprazine significantly increased and chronic cariprazine significantly decreased the number of spontaneously firing dopaminergic neurons in the VTA, but not in the SNc. Intravenous administration of cariprazine partially but significantly inhibited dopaminergic neuronal firing in both regions, which was prevented by L741,626 but not SB 277011A. In both VTA and SNc, cariprazine, SB 277011A, and L741,626 significantly antagonized the suppression of dopamine cell firing elicited by PD 128,907. CONCLUSIONS: Cariprazine significantly modulates the number of spontaneously active VTA dopamine neurons and moderately suppresses midbrain dopamine neuronal activity. The contribution of dopamine D2 receptors to cariprazine's in vivo effects is prevalent and that of D3 receptors is less apparent.


Assuntos
Agonistas de Dopamina/farmacologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Piperazinas/farmacologia , Substância Negra/citologia , Área Tegmentar Ventral/citologia , Potenciais de Ação/efeitos dos fármacos , Animais , Benzopiranos/farmacologia , Relação Dose-Resposta a Droga , Indóis/farmacologia , Masculino , Nitrilas/farmacologia , Oxazinas/farmacologia , Técnicas de Patch-Clamp , Piperidinas/farmacologia , Ratos , Ratos Sprague-Dawley , Tetra-Hidroisoquinolinas/farmacologia , Fatores de Tempo
8.
CNS Neurosci Ther ; 23(6): 518-525, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28417559

RESUMO

AIM: Asenapine is a new atypical antipsychotic prescribed for the treatment of psychosis/bipolar disorders that presents higher affinity for serotonergic than dopaminergic receptors. The objective of this study was to investigate its antidepressant-like and antimanic-like properties on relevant animal models of depression and mania and to assess the acute and chronic effect of Asenapine on dorsal raphe nucleus (DRN) 5-HT cell firing activity. METHODS: We assessed the effects of Asenapine using in vivo electrophysiological and behavioral assays in rats. RESULTS: Behavioral experiments showed that Asenapine had no significant effect on immobility time in the forced swim test (FST) in control rats. In the ACTH-treated rats, a model of antidepressant-resistance, Asenapine failed to alter immobility time in the FST. In contrast in the sleep deprivation (SD) model of mania, acute administration of Asenapine significantly decreased the hyperlocomotion of SD rats. In the DRN, acute administration of Asenapine reduced the suppressant effect of the selective 5-HT7 receptor agonist LP-44 and of the prototypical 5-HT1A receptor agonist 8-OH-DPAT on 5-HT neuronal firing activity. In addition, chronic treatment with Asenapine enhanced DRN 5-HT neuronal firing and this effect was associated with an alteration of the 5-HT7 receptor responsiveness. CONCLUSION: These results confirm that Asenapine displays robust antimanic property and effective in vivo antagonistic activity at 5-HT1A/7 receptors.


Assuntos
Afeto/efeitos dos fármacos , Antipsicóticos/farmacologia , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Receptor 5-HT1A de Serotonina/metabolismo , Receptores de Serotonina/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Agonistas de Receptores Adrenérgicos alfa 2/farmacologia , Hormônio Adrenocorticotrópico/farmacologia , Afeto/fisiologia , Animais , Dexmedetomidina/farmacologia , Dibenzocicloeptenos , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos , Masculino , Neurônios/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Núcleos Septais/citologia , Serotoninérgicos/farmacologia , Privação do Sono/tratamento farmacológico , Privação do Sono/metabolismo , Natação/psicologia
9.
Neuropharmacology ; 119: 91-99, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28390892

RESUMO

Recent studies have shown that serotonin2B receptor (5-HT2BR) antagonists exert opposite facilitatory and inhibitory effects on dopamine (DA) release in the medial prefrontal cortex (mPFC) and the nucleus accumbens (NAc), respectively, thereby leading to the proposal that these compounds could provide an interesting pharmacological tool for treating schizophrenia. Although the mechanisms underlying these effects remain unknown, several data in the literature suggest that 5-HT1ARs located into the mPFC could participate in this interaction. The present study, using in vivo microdialysis and electrophysiological recordings in rats, assessed this hypothesis by means of two selective 5-HT1AR (WAY 100635) and 5-HT2BR (RS 127445) antagonists. WAY 100635, administered either subcutaneously (0.16 mg/kg, s.c) or locally into the mPFC (0.1 µM), blocked the changes of mPFC and NAc DA release induced by the intraperitoneal administration of RS 127445 (0.16 mg/kg, i.p.). The administration of RS 127445 (0.16 mg/kg, i.p.) increased both dorsal raphe nucleus (DRN) 5-HT neuron firing rate and 5-HT outflow in the mPFC. Likewise, mPFC 5-HT outflow was increased following the intra-DRN injection of RS 127445 (0.032 µg/0.2 µl). Finally, intra-DRN injection of RS 127445 increased and decreased DA outflow in the mPFC and the NAc, respectively, these effects being reversed by the intra-mPFC perfusion of WAY 100635. These results demonstrate the existence of a functional interplay between mPFC 5-HT1ARs and DRN 5-HT2BRs in the control of the DA mesocorticolimbic system, and highlight the clinical interest of this interaction, as both receptors represent an important pharmacological target for the treatment of schizophrenia.


Assuntos
Dopamina/metabolismo , Vias Neurais/fisiologia , Núcleo Accumbens/fisiologia , Córtex Pré-Frontal/metabolismo , Receptor 5-HT1A de Serotonina/metabolismo , Potenciais de Ação/efeitos dos fármacos , Análise de Variância , Animais , Antagonistas de Dopamina/farmacologia , Relação Dose-Resposta a Droga , Masculino , Microdiálise , Vias Neurais/efeitos dos fármacos , Núcleo Accumbens/efeitos dos fármacos , Piperazinas/farmacologia , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/efeitos dos fármacos , Piridinas/farmacologia , Pirimidinas/farmacologia , Ratos , Ratos Sprague-Dawley , Antagonistas da Serotonina/farmacologia , Fatores de Tempo
10.
Eur Neuropsychopharmacol ; 26(11): 1806-1817, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27665061

RESUMO

Citalopram is a clinically applied selective serotonin re-uptake inhibitor for antidepressant pharmacotherapy. It consists of two enantiomers, S-citalopram (escitalopram) and R-citalopram, of which escitalopram exerts the antidepressant therapeutic effect and has been shown to be one of the most efficient antidepressants, while R-citalopram antagonizes escitalopram via an unknown molecular mechanism that may depend on binding to a low-affinity allosteric binding site of the serotonin transporter. However, the precise mechanism of antidepressant regulation of the serotonin transporter by citalopram enantiomers still remains elusive. Here we investigate escitalopram׳s acute effect on (1) serotonergic neuronal firing in transgenic mice that express the human serotonin transporter without and with a mutation that disables the allosteric binding site, and (2) regulation of the serotonin transporter׳s cell surface localization in stem cell-derived serotonergic neurons. Our results demonstrate that escitalopram inhibited neuronal firing less potently in the mouse line featuring a mutation that abolishes the function of the allosteric binding site and induced serotonin transporter internalization independently of the allosteric binding site mechanism. Furthermore, citalopram enantiomers dose-dependently induced serotonin transporter internalization. In conclusion, this study provides new insight into antidepressant effects exerted by citalopram enantiomers in presence and absence of a functional allosteric binding site.


Assuntos
Antidepressivos/metabolismo , Citalopram/metabolismo , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Neurônios Serotoninérgicos/efeitos dos fármacos , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Animais , Sítios de Ligação/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células-Tronco Neurais/efeitos dos fármacos , Receptores de Superfície Celular/efeitos dos fármacos , Proteínas da Membrana Plasmática de Transporte de Serotonina/efeitos dos fármacos , Estereoisomerismo
11.
J Pharmacol Exp Ther ; 358(3): 472-82, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27402279

RESUMO

Major depressive disorder (MDD) is a common psychiatric disorder that often features impairments in cognitive function, and these cognitive symptoms can be important determinants of functional ability. Vortioxetine is a multimodal antidepressant that may improve some aspects of cognitive function in patients with MDD, including attention, processing speed, executive function, and memory. However, the cause of these effects is unclear, and there are several competing theories on the underlying mechanism, notably including regionally-selective downstream enhancement of glutamate neurotransmission and increased acetylcholine (ACh) neurotransmission. The current work sought to evaluate the ACh hypothesis by examining vortioxetine's ability to reverse scopolamine-induced impairments in rodent tests of memory and attention. Additionally, vortioxetine's effects on hippocampal extracellular ACh levels were examined alongside studies of vortioxetine's pharmacokinetic profile. We found that acute vortioxetine reversed scopolamine-induced impairments in social and object recognition memory, but did not alter scopolamine-induced impairments in attention. Acute vortioxetine also induced a modest and short-lived increase in hippocampal ACh levels. However, this short-term effect is at variance with vortioxetine's moderately long brain half life (5.1 hours). Interestingly, subchronic vortioxetine treatment failed to reverse scopolamine-induced social recognition memory deficits and had no effects on basal hippocampal ACh levels. These data suggest that vortioxetine has some effects on memory that could be mediated through cholinergic neurotransmission, however these effects are modest and only seen under acute dosing conditions. These limitations may argue against cholinergic mechanisms being the primary mediator of vortioxetine's cognitive effects, which are observed under chronic dosing conditions in patients with MDD.


Assuntos
Acetilcolina/metabolismo , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/tratamento farmacológico , Espaço Extracelular/efeitos dos fármacos , Hipocampo/patologia , Piperazinas/farmacologia , Escopolamina/farmacologia , Sulfetos/farmacologia , Animais , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/fisiopatologia , Espaço Extracelular/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/fisiopatologia , Masculino , Piperazinas/uso terapêutico , Ratos , Ratos Wistar , Reconhecimento Psicológico/efeitos dos fármacos , Comportamento Social , Sulfetos/uso terapêutico , Transmissão Sináptica/efeitos dos fármacos , Vortioxetina
12.
Neuropharmacology ; 109: 59-68, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27260325

RESUMO

Recent studies suggest that the central serotonin2B receptor (5-HT2BR) could be an interesting pharmacological target for treating neuropsychiatric disorders related to dopamine (DA) dysfunction, such as schizophrenia. Thus, the present study was aimed at characterizing the role of 5-HT2BRs in the control of ascending DA pathway activity. Using neurochemical, electrophysiological and behavioral approaches, we assessed the effects of two selective 5-HT2BR antagonists, RS 127445 and LY 266097, on in vivo DA outflow in DA-innervated regions, on mesencephalic DA neuronal firing, as well as in behavioral tests predictive of antipsychotic efficacy and tolerability, such as phencyclidine (PCP)-induced deficit in novel object recognition (NOR) test, PCP-induced hyperlocomotion and catalepsy. Both RS 127445 (0.16 mg/kg, i.p.) and LY 266097 (0.63 mg/kg, i.p.) increased DA outflow in the medial prefrontal cortex (mPFC). RS 127445, devoid of effect in the striatum, decreased DA outflow in the nucleus accumbens, and potentiated haloperidol (0.1 mg/kg, s.c.)-induced increase in mPFC DA outflow. Also, RS 127445 decreased the firing rate of DA neurons in the ventral tegmental area, but had no effect in the substantia nigra pars compacta. Finally, both RS 127445 and LY 266097 reversed PCP-induced deficit in NOR test, and reduced PCP-induced hyperlocomotion, without inducing catalepsy. These results demonstrate that 5-HT2BRs exert a differential control on DA pathway activity, and suggest that 5-HT2BR antagonists could represent a new class of drugs for improved treatment of schizophrenia, with an ideal profile of effects expected to alleviate cognitive and positive symptoms, without eliciting extrapyramidal symptoms.


Assuntos
Antipsicóticos/uso terapêutico , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Esquizofrenia/tratamento farmacológico , Esquizofrenia/metabolismo , Antagonistas do Receptor 5-HT2 de Serotonina/uso terapêutico , Animais , Antipsicóticos/farmacologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Relação Dose-Resposta a Droga , Masculino , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Ratos , Ratos Sprague-Dawley , Antagonistas do Receptor 5-HT2 de Serotonina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA